高效液相色谱我们常用,如何操作自然难不倒我们,那么,液相色谱的分析的理论基础是什么?这个你知道吗?这一篇咱们好好学一学液相色谱的分析理论基础,可以让你更好地使用高效液相色谱仪。
色谱分析的目的是将样品中各组分彼此分离。组分要达到完全分离,两峰间的距离必须足够远,两峰间的距离是由组分在两相的分配系数决定的,即色谱过程的热力学性质有关。但是两峰间虽有一定的距离,如果每个峰都很宽,以至彼此重叠,还是不能分开。这些峰的宽或窄是由组分在 中传质和扩散行为决定的,即与色谱过程中的动力学性质有关。
因此要从动力学和热力学两方面来研究色谱行为。色谱热力学理论主要研究溶质在 内的分离机制及分子特征与分离结果之间的关系;色谱动力学主要研究溶质在 中的运输规律,解释色谱流出曲线的形状、影响色谱区带展宽及峰形的因素,从而为获得高效能色谱分离结果提供理论指导,为峰形预测、重叠峰的定量解析以及选择最佳色谱分离方法奠定理论基础。
先复习一下仪器分析的重点——色谱分析的三大理论。
相平衡理论
相平衡理论认为溶质在流动相和固定相之间达到平衡。
分配(吸附)色谱的分离是基于样品组分在固定相和流动相之间反复多次的分配(吸附-脱附)过程,在一定温度和压力下,组分在固定相和流动相之间分配达到平衡时的浓度之比K分配系数,分配系数是由组分在两相的热力学性质决定的。在一定温度下,分配系数K小的组分在流动相中浓度大,先流出 。
K=Cs/Cm lnK=-△Gm/RTc
由上式可以看出分配系数和温度呈反比,升高温度,分配系数变小,组分在固定相的浓度减小,可缩短出峰时间。
分配比κ又称容量因子,它是在一定温度和压力下,组分在两相间分配达平衡时,分配在固定相和流动相中的质量比κ=ms/mm,κ越大说明组分在固定相中的量越多,相当于柱的容量越大,因此又称分配容量比或容量因子。它是衡量 对被分离组分保留能力的重要参数。κ也决定于组分及固定相热力学性质,他不仅随柱温、柱压变化而变化,而且还与流动相及固定相体积有关。
塔板理论
将精馏塔中踏板的概念引入到 中,来描述组分在两相间的分配行为,同时引入理论塔板数作为衡量柱效的指标。在柱内一小段长度H内,组分可以在两相间迅速达到平衡。这一小段柱长称为理论塔板高度H。
流动相进入 不是连续的,而是脉动式的,每次进入一个塔板体积△Vm。所有组分在开始时存在于第0号塔板上,而且式样纵向扩散可忽略。分配系数在所有塔板上是常数,与组分在某一塔板上的量无关。
精馏塔模型
图解法计算理论塔板数
理论塔板数:n=5.54(tr/W1/2)2
塔板高度:H=L/n
塔板理论的缺陷:其假设并不完全符合柱内事实,纵向扩散不能忽略,它也没有考虑各种动力学因素对 内传质过程的影响,因此它不能解释造成谱带扩张的原因和影响板高的各种因素,也不能说明为什么不同流速下可以测得不同的理论板数,这就限制了它的应用。
速率理论
Van Deemter在研究气液色谱时,提出了色谱过程动力学理论——速率理论。他们吸收了塔板理论中板高的概念,并充分考虑了组分在两相间的扩散和传质过程,从而在动力学基础上较好的解释了影响板高的各种因素。该理论模型对气相色谱、液相色谱都适用。
H=A+B/u+Cu
u流动相线速度
ABC为常数,分别代表涡流扩散项系数,分子扩散项系数和传质阻力项系数。
1.涡流扩散
涡流扩散与填充物的平均直径dp的大小和填充不规则因子λ有关,与流动相的性质、线速度及组分性质无关。为了减少涡流扩散,提高柱效,使用细而均匀的颗粒,并且填充均匀。
2.分子扩散项B/u(纵向扩散)
纵向分子扩散是由浓度梯度造成的。组分从柱入口加入,其浓度分布的构型呈塞子状,它随着流动相向前推进,由于存在浓度梯度,塞子必然自发的向前和向后扩散,造成谱带展宽。分子扩散项系数为B=2γDg,γ是填充柱内流动相扩散路径弯曲的因素,也称弯曲因子。它反映了固定相颗粒的几何形状对自由分子扩散的阻碍情况;Dg为组分在流动相的扩散系数。分子扩散项与组分在流动相中扩散系数Dg成正比,而Dg与流动相及组分性质有关:相对分子质量大的组分Dg小,Dg反比于流动相相对分子质量的平方根,所以采用相对分子质量较大的流动相可以降低B项。Dg随柱温增高而增加,但反比于柱压。另外,纵向扩散与组分在 内停留的时间有关,流动相流速小,组分停留时间长,纵向扩散就大。因此降低纵向扩散影响,要加大流动相流速。对于液相色谱,组分在流动相中的纵向扩散可以忽略。
纵向扩散示意图
3.传质阻力项
对于液液分配色谱,传质阻力系数包含流动相传质阻力系数和固定相传质阻力系数C=Cm+Cs
Cm又包含流动相中的传质阻力和直流的流动相中的传质阻力
Cm=Ωmdp2/Dm+Ωsmdp2/Dm
右边第一项为流动相中的传质阻力。当流动相流过 内的填充物时,靠近填充物颗粒的流动相流速比在流路中间的稍微慢一些,故柱内流动相的流速是不均匀的。这种传质阻力对板高的影响与固定相力度dp的平方呈正比,与式样分子在流动相中的扩散系数Dm呈反比。Ωm是由柱和填充的性质决定的因子。右边第二项为滞留的流动相中的传质阻力。这是由于固定相的多孔性造成某部分流动相滞留在一个局部,滞留在固定相微空内的流动相一般是停滞不动的。流动相中的试样分子要与固定相进行质量交换,必须首先扩散到滞留区。固定相的粒度越小,微孔孔径越大,传质速率越快,柱校就越高。
H=2λdp+2λDm/u+(Ωmdp2/Dm+Ωsmdp2/Dm+Ωsdp2/Ds)u
在液液色谱中纵向扩散可以忽略不计,影响柱校的主要因素是传质阻力项。
色谱三大理论复习完了,在实际应用中的指导意义如何呢?
最大的意义就是:流动相速率对板高的影响
H-u图
对于一定长度的柱子,理论塔板数越大,板高越小,则柱校越高。根据Van Deemter公式制作的 H-u图可以看出,对应某一流速都有一个板高极小值,这个极小值就是柱校最高点。在实际实验中需要综合各种因素,选择合适的 规格。
实验与分析
展源
何发
加载更多