塑料的发明极大地便利了我们的日常生活。但是,大规模塑料垃圾的产生以及不当的塑料处理方式,使塑料垃圾污染(也就是白色污染)成为当下最严峻的环境问题之一。塑料垃圾问题之所以难以解决,主要是石油基塑料在自然界中需要上百年才能降解,这给土壤和环境造成了污染。要想从源头解决“白色污染”,使用可降解塑料是首选,如用聚乳酸(PLA)代替石油基塑料。为了加快可降解塑料的降解速度,我国科学家发明了一种“活”塑料。
可降解塑料
有一类生物来源的高分子聚合物,自然界中存在能够快速降解它们的微生物和酶,可以在不到一年的时间内自然降解这些聚合物,它们被称为“可降解塑料”,如聚乳酸(PLA)、聚己二酸/对苯二甲酸丁二醇酯(PBAT)、聚羟基脂肪酸(PHA)、聚丁二酸丁二醇酯(PBS)、聚碳酸酯(PCL)等。
目前,以可降解塑料代替石油基塑料,已经在很多领域得到应用,例如超市有偿提供的可降解塑料袋、餐饮行业的可降解塑料吸管,以及医院做手术用的可降解手术缝线(不需要拆线)等。
芽孢:提高降解速度
要想提高可降解塑料的降解速度,就要增加降解酶的数量。将降解酶放到塑料中,在塑料被废弃的时候自动释放出降解酶,提高降解速度。不过,如何把降解酶保存到塑料中,并保证平时使用时不降解,废弃时才启动降解呢?科研工作者们想到了细菌的一个特殊结构——芽孢。
自然界通过亿万年的演化,使诸多微生物进化出了抵抗恶劣环境条件的能力。当不再适合生物生存和繁殖的极端环境到来时,细菌就会转变成芽孢的形式,这种转变可以让细菌获得超强的抵御能力。芽孢可以忍受极端的干燥、温度和压力,而这些极端环境恰好存在于塑料加工的环境中。因此,中国科学院深圳先进技术研究院戴卓君团队提出,通过合成生物学方法改造枯草芽孢杆菌,将可控分泌塑料降解酶(洋葱霍尔德菌脂肪酶,Lipase BC)的基因线路导入枯草芽孢杆菌,并在二价锰离子的环境中,迫使枯草芽孢杆菌“休眠”,形成芽孢形态。
产生的芽孢同样带有编辑的基因线路,并且相比于细菌还具备了针对高温、高压、有机溶剂和干燥的耐受性。研究团队通过将基因工程改造的芽孢溶液与聚碳酸酯(PCL)塑料母粒直接混合,并通过高温熔融挤出或者有机溶剂方法制备了一系列含有芽孢的塑料。
在物理性能方面的各项测试中,“活”塑料与普通塑料(PCL)在屈服强度、应力极限、最大形变量和熔点等参数上均没有显著区别。在不需要任何其他外源制剂的加入下,土壤环境中,“活”塑料能够在25~30天内被完全降解,而传统可降解塑料(PCL)则需要55天左右才能被降解至肉眼不可见。
为了验证系统的普适性,研究人员继续尝试了其他的塑料体系,将芽孢与聚丁二酸丁二醇酯(PBS)、聚己二酸/对苯二甲酸丁二醇酯(PBAT)、聚乳酸(PLA)、聚羟基脂肪酸(PHA)以及聚对苯二甲酸乙二醇酯(PET)等聚合材料进行混合加工,制备了相应的“活”塑料。
“活”塑料在土壤中的降解过程
a.“活”塑料在土壤中30天即可完全降解;
b.普通的PCL塑料在土壤中55天完全降解。
图片来源:参考文献
研究人员还将“活”塑料置于常见的碳酸饮料环境中浸泡2个月,在没有外界作用的情况下,“活”塑料能够保持稳定的外形,说明活体塑料能够像传统塑料一样正常使用,只有在它们被破坏或被废弃时,才会启动降解程序。这项研究为新型可生物降解塑料的开发提供了新的视角和方法,有望助力解决当下的塑料污染困境。
科普中国
展源
何发
2024-09-04
2024-10-15
2024-10-29
2024-10-17
2024-09-02
2024-10-22
2024-09-24
是科技创新的基础条件和成果产出源泉。十四五以来,国家着力打造战略科技力量,推进国家 建设和国家重点 体系重组,数字化、智能化、自动化赋能生物科技快速发展,掀起了科研领域创新变革的浪潮。
作者:展源
评论
加载更多